

电子束泵浦钙钛矿量子点薄膜发光机理

任航^{1,2},母一宁^{1,2*},杜鹏¹,李彦正¹,樊海波^{3,4},王帅¹,Monroy Idelfonso Tafur⁵, Ibrahim Makram⁶

1长春理工大学物理学院,吉林长春130022;

²长春理工大学重庆研究院,重庆 401122;

3微光夜视技术重点实验室,陕西西安710018;

*昆明物理研究所,云南昆明 650221;

⁵埃因霍芬理工大学光电子集成研究中心,荷兰埃因霍芬5600 MB;

。埃及国家天文与地球物理研究所空间太阳能研究部,埃及开罗 11421

摘要为了对电子束泵浦钙钛矿量子点器件的建模与设计提供理论支撑,探究了电子束泵浦钙钛矿量子点膜层发光的 微观过程,揭示了其能量转化模型与发光机理。首先从理论层面分析了电子束泵浦钙钛矿量子点发光与激射的微观物 理过程,指出电子束泵浦量子点发光的激射阈值与发光阈值是构建其能量转化模型所需检测的宏观物理约束边界。分析讨论了其激射阈值与发光阈值的有效检测方法,并多次开展了具体的评估实验。最后,结合检测物理约束边界,模拟并构建了钙钛矿量子点膜层内部发光能量转化效率、纳米晶极化分布随电子束泵浦强度变化的关系。

关键词 量子光学;钙钛矿量子点;电子束泵浦;随机激射;发光效率;极化分布 中图分类号 O436 **文献标志码** A

DOI: 10.3788/AOS202242.1927001

Luminescence Mechanism of Perovskite Quantum Dot Films Pumped by Electron Beam

Ren Hang^{1,2}, Mu Yining^{1,2*}, Du Peng¹, Li Yanzheng¹, Fan Haibo^{3,4}, Wang Shuai¹, Monroy Idelfonso Tafur⁵, Ibrahim Makram⁶

¹School of Physics, Changchun University of Science and Technology, Changchun 130022, Jilin, China;
 ²Chongqing Research Institute, Changchun University of Science and Technology, Chongqing 401122, China;
 ³Science and Technology on Low-Light-Level Night Vision Laboratory, Xi' an 710018, Shaanxi, China;
 ⁴Kunming Institute of Physics, Kunming 650221, Yunnan, China;

⁵Institute for Photonic Integration, Eindhoven University of Technology, Eindhoven 5600 MB, Netherlands; ⁶Solar and Space Research Department, National Research Institute of Astronomy and Geophysics, Cairo 11421, Egypt

Abstract To provide theoretical support for modeling and designing perovskite quantum dot devices pumped by electron beams, this paper explores the microscopic luminescence process of perovskite quantum dot films pumped by electron beams, which reveals the energy conversion model and luminescence mechanism. Firstly, the paper analyzes the microscopic luminescence and lasing processes of perovskite quantum dots pumped by electron beams theoretically. Furthermore, the lasing and luminescence thresholds of quantum dots pumped by electron beams are found to be the macroscopic physical constraint boundaries that should be detected to build the energy conversion model. Then, the effective detection methods of lasing and luminescence thresholds are analyzed and discussed, and specific evaluation experiments have been carried out repeatedly. Finally, the relationship among luminescence energy conversion efficiency, polarization distribution of nanocrystals, and electron beam pumping intensity in perovskite quantum dot films is simulated and constructed by combining with the detection of physical constraint boundaries.

收稿日期: 2022-03-07; 修回日期: 2022-03-31; 录用日期: 2022-04-20

基金项目:国家自然科学基金(61905026)、中国科学院天文光学技术重点实验室建设项目(CAS-KLAOTKF201803)、吉林省 科技厅国际科技合作项目(20210402067GH)、吉林省科技厅中青年科技创业领军人才及团队项目(20200300167RQ)、吉林省教育厅 科学技术研究项目(JJKH20210830KJ,JJKH20210800KJ)、重庆市自然科学基金面上项目(cstc2021jcyj-msxmX0500)

通信作者: *muyining1985@hotmail.com

Key words quantum optics; perovskite quantum dots; electron beam pumping; random lasing; luminescence efficiency; polarization distribution

1引言

近年来,全无机铯铅卤化物钙钛矿材料CsPbX。 (X=I,Br,Cl)因其优异的瞬态光学性质受到研究人员 的青睐^[1-5]。CsPbX₃量子点尺寸比传统量子点大两个 数量级,具有较高的三阶非线性磁化率和较大的双光 子吸收截面,是一种优秀的非线性吸收材料[6-7]。目 前,学界关于CsPbX₃量子点发光的报道所采取的主流 手段为瞬态光泵浦模式[8-9]。2015年,研究人员报道了 基于全无机胶体钙钛矿量子点(PQDs)的超快光泵 浦、低阈值、波长可调的随机激射,其结合能仅为 50 meV,这证明了PQDs在发光效率和激射方面具有 一定的优势^[10]。Tao等^[11]也报道了CsPbX₃纳米晶的 随机激光,其光学增益高达450 cm⁻¹。全无机铯铅卤 化物钙钛矿材料是一种化学稳定、低阈值和波长可调 的激光材料,其优势已经被学界广泛证实。然而,学术 界关于提高光泵浦量子点发光效率和增大激射品质因 数的技术手段主要包括减小泵浦光波长、压缩泵浦脉 冲时隙、制造复杂的微纳结构等[12-17]。例如,最典型的 方法是通过提高CsPbBr3薄膜表面粗糙度去提高 CsPbBr₃纳米晶被多光子同时泵浦的概率^[18]。可见, 通过增大纳米晶接收到的泵浦能量密度可以有效提高 其激射概率,但随之而来的热密度增加也会造成量子 点本身的发光转化效率下降。因此,探寻一种更为高 效的泵浦方式已然成为进一步充分发挥钙钛矿材料性 能优势的必要前提。

从理论上讲,真空中电子的迁移率一般比固体电 子迁移率高 2~4个数量级。泵浦能量可以以动能的 形式存贮于真空电子束中,所以,相比于传统的光泵浦 而言,电子泵浦能量密度可远高于普通光子,这将极大 地提升电子束泵浦钙钛矿量子激射的能量转化效率以 及解决热密度过高的问题。基于此,本课题组于 2020 年首次报道了基于电子束泵浦 PQDs随机激射这一物 理现象^[19-20]。然而,为了实现电子束泵浦 PQDs随机激 射光源的器件设计,较为完整地构建并揭示量子薄膜 的发光机理是十分必要的。本文进一步研究了 PQDs 的 CsPbBr₃薄膜在电子束泵浦下的发光机理,揭示了 量子点膜层的发光分布与电子束泵浦之间的功率-电 压(P-V)关系,进而构建其稳态发光器件模型。

2 量子点发光基本原理

从微观角度考虑,CsPbBr₃ PQDs材料理论上属于 典型的中心对称结构,但现实中许多因素会干扰这种 反演对称性,例如 Pb²⁺孤对电子、样品缺陷和表面效 应^[21],在实验中还会经常观察到 Rashba效应或二次谐 波效应^[22-23]。因此,CsPbBr₃中的 Pb 孤对原子在瞬时 激励源泵浦下会被激活并发生微位移。图 1(a)展示 了 CsPbBr₃在(001)平面上的电子定位函数。可见,Pb

原子周围电子密度存在不对称性,阳离子的位移会直 接干扰局域对称性,进而导致CsPbBr。中产生高阶位 移电流。同时,由图1(b)所示的CsPbBra能带结构图 可知,该材料属于典型的直接带隙材料结构,其价带主 要与Pb的S轨道和Br的P轨道相关,导带主要与Pb 的P轨道相关。而由于价带中的电子密度主要分布在 原子周围,当原子之间发生相对位移时,导带中才会出 现较大的电子密度,此时导带与价带之间的电荷中心 将发生相对位移^[24]。导带和价带的具体电子密度分布 如图1(c)、(d)所示。可见,具有较大动能的泵浦电子 一旦进入CsPbBr₃薄膜,导带与价带间电荷中心的位 移会与电子在薄膜中的散射轨迹密切相关。随着电子 入射深度的不断增加,电子自身所携带的动能会逐渐 减小,从而导致相对位移的减小和能量转换效率的降 低。因此,从宏观角度定量研究CsPbBr₃薄膜中电子 的动能衰减分布对揭示发光效率具有重要意义。

在宏观层面,由于传统的光泵浦模型中单一光子 所携带的能量有限,因而实验中通常需要增加量子点 表面粗糙度提升同一纳米晶被多个光子同时激励泵浦 的概率。而对于电子束泵浦模型而言,由于电子本身 存在一定的质量,通过外部泵浦电场就可以直接为其 储存动能。电子束泵浦 CsPbBr₃薄膜不仅可以和光泵 浦一样极化钙钛矿纳米晶的表面,还可以进一步极化 CsPbBr₃纳米晶内部。因此,为进一步量化地说明量 子点的发光机理及发光效率,本文通过量子点发光光 谱实验确定了 PQDs 薄膜的水平和竖直发光区域分 布。基于空间光学函数传递特性进行实验,并估算了 电子束泵浦CsPbBr₃薄膜的发光阈值及发光面积。最 后基于上述结果对量子点发光效率进行建模。实验证 明,当泵浦电场强度足够大时,电子束在钙钛矿薄膜中 的散射方向主要为水平方向,理论上其横向散射区域 的半径可达几微米。而与水平方向的散射相比,由于 入射能量在垂直方向上很难穿透到 PQDs 薄膜内部, 因而大部分入射能量仅局限在亚微米量级的薄膜 表层。

3 实 验

3.1 实验器材的选择及量子点薄膜的制备与表征

在众多光电阴极的选择中,金阴极虽在转换效率 上略低于多碱光电阴极,但其在本文的光谱测量实验 中具有明显的优势。如果在后续的光谱测量实验中使 用多碱或近红外光电阴极,PQDs的发光波段会与光 电阴极的监测波段重叠,这将直接影响光谱测量结果 的准确性。相反,金阴极的工作波段主要集中在紫外 波段,与可见光波段的交集很少,这可以有效地避免电 子束泵浦量子点发光与测试光谱之间的相互干扰。另 外,实验中使用微通道板对光电阴极发出的光电子进 行放大,通过调节微通道板两侧的工作电压即可实现

图 1 CsPbBr₃微观结构分析。(a) CsPbBr₃在(001)平面的电子定位函数;(b) CsPbBr₃的能带结构;(c)价带的电子密度;(d)导电带的电子密度

Fig. 1 Microstructure analysis of CsPbBr3. (a) Electron localization function of CsPbBr3 at (001) plane; (b) energy band structure of CsPbBr3; (c) electron density of valence band; (d) electron density of conduction band

对最终泵浦电流密度的精准控制。基于上述分析,本 文实验中选择使用355 nm的激光器作为触发源,并根 据文献[25]合成了CsPbBr₃溶液并将其旋涂在ITO (铟锡氧化物)表面。旋涂过程中通过调节旋涂速度可 以有效地控制ITO衬底上CsPbBr₃薄膜的厚度,所制 备样品的具体表征如图2和图3所示。

图 2 CsPbBr₃纳米晶体的X射线衍射图谱 Fig. 2 X-ray diffraction patterns of CsPbBr₃ nanocrystals

CsPbBr₃量子点的X射线衍射图如图2所示,其特 征峰分别为15.1°、21.5°、30.4°、34.2°和37.6°,对应的 晶体结构为 $\{001\}$ 、 $\{110\}$ 、 $\{002\}$ 、 $\{210\}$ 和 $\{211\}$,这符 合粉末衍射标准联合委员会(JCPDS)数据库(No.01-072-7929)的标准衍射模式,属于正交立方晶体结构。 此外,利用透射电子显微镜(TEM)对本文实验中采用 的CsPbBr₃纳米晶进行表征,结果如图3(a)所示。图3 (b)为纳米晶的尺寸分布,由图可知纳米晶的平均尺寸 约为15 nm,图中*d*为纳米晶平均尺寸,*n*为采样数量。 图3(c)~(e)为不同旋涂层厚度的CsPbBr₃量子点膜 的扫描电子显微镜(SEM)图像。

3.2 激射阈值测量实验

激射阈值测量实验中采用355 nm的激光源触发 金阴极产生理想的光电子,光电子通过微通道板倍增 形成电子束并通过外部电场,为电子束储能,储能后形 成的高动能电子束轰击 ITO 衬底上 [图 3(c)~(e)]的 CsPbBr₃薄膜,从ITO背面接收薄膜的光谱数据。其 中,电子束所携带的动能可由微通道板和ITO之间的 泵浦电场直接控制。实验结果表明, PQDs的激射阈 值与泵浦功率密度和薄膜厚度直接相关,如图4(a)所 示。可见,随着电子束动能的增加,CsPbBr3量子点底 层薄膜发光中随机激射的比例逐渐增大。从ITO底 部收集发光光谱,当膜层厚度为300 nm时,3 keV的泵 浦能量便可以使 CsPbBr_a薄膜底层出现明显的激射 峰,而当泵浦能量达到5keV时,CsPbBr3量子点薄膜 底层的发光将以激射为主,具体的透射式光谱测量结 果如图4(a)中插图所示,其中ITO的尺寸为20mm× 20 mm。此外,为了评估PQDs发光的时空相关性,测 量了CsPbBra薄膜的瞬态发光特性,如图4(b)所示,这 一实验结果也与学术界的一些相关报道相似^[26]。换而 言之,极化后的钙钛矿纳米晶通常需要10ns左右的延 迟才能由激发态恢复为稳态,如果针对同一纳米晶泵 浦间隔超过10 ns,则可以认为在该纳米晶极化的过程 中不存在时间相干性。基于此,通过精确控制微通道 板的板压来改变泵浦电子束的电流密度,此时泵浦电 场能量为5 keV,而泵浦电流密度为6.8 fA/ μ m²。此 时由电流的定义 $(1 A = 6.24 \times 10^{18} \text{ electron/s})$ 可知,电 子束表面电流密度(6.8 fA/µm²)可以等效为PQDs薄 膜在每 28.26 μm²的区域内每间隔 834 ns 将会被1个 电子泵浦,因此图4(a)中的实验结果均属于典型的小 注入模式下的结果,即电子束泵浦过程中每个泵浦电

图 3 CsPbBr₃薄膜的表征。(a) CsPbBr₃纳米晶的透射电子显微镜(TEM)表征;(b)纳米晶体的尺寸分布;(c)~(e)扫描电子显微镜 (SEM)对 300,800,4500 nm 厚度的 CsPbBr₃钙钛矿薄膜的表征

Fig. 3 Characterization of CsPbBr3 films. (a) TEM characterization of CsPbBr₃ nanocrystals; (b) size distribution of nanocrystals; (c)-(e) scanning electron microscopy (SEM) characterization of CsPbBr₃ perovskite thin films with thicknesses of 300, 800, and 4500 nm

子在时间和空间维度上皆不相关,每个纳米晶在下一次电子泵入PQDs区域之前可以认为已经完全去极化并恢复稳态。图4(a)中FWHM为半峰全宽。综上,在小注入模式下,当泵浦电压达到3keV且量子点薄膜厚度为300 nm时,其激射区域已经可以达到膜层底

部并出现明显的激射阈值效应。当泵浦电场达到 5 keV时,激射区域将能覆盖整个膜层底部,激射发光 区域将由圆锥体演变为圆台。上述实验所得出的电子 束泵浦的激射阈值能量分布模型会对后续的实验分析 有重要影响。

图 4 电子束泵浦 PQDs发光。(a)电子束泵浦 PQDs的发光阈值随泵浦电压的变化,插图为电子束泵浦 PQDs发光光谱图; (b) PQDs的瞬态发光

Fig. 4 Electron beam pumped perovskite quantum dot luminescence. (a) Luminescence threshold of electron beam pumped perovskite quantum dots varies with pump voltage (inset is electron beam pumped perovskite quantum dot luminescence spectrum);
 (b) transient luminescence of perovskite quantum dots

3.3 发光阈值测量实验

通过上述随机激射阈值的测量实验,基本上在垂 直方向上获得了PQDs的激射阈值及能量分布边界。 但由于纳米晶结构复杂,泵浦电子束进入量子点膜层 后在水平方向的散射上会与垂直方向的散射存在较大 的差异,若直接将上述垂直方向上的能量分布情况应 用于水平方向,则会产生较大的实验误差。因此,若要 精准地评估量子点薄膜的发光特性,仍需对水平方向 上 PQDs的发光阈值及电子束的空间散射分布进行 测量。

由阿贝成像原理可知,通过精确测量电子束泵浦 PQDs发光的光学传递特性即可间接计算量子点薄膜 的发光边界和发光阈值。针对PQDs电子束泵浦发光 的空间光学传递特性进行了如下实验和测量。首先在 真空测试系统中将PQDs薄膜放在放大倍数为40的 显微镜的焦平面上,所选用CMOS探测器的像元尺寸 优于140 nm,其探测器的光学采集能力在550 nm 波段 远高于显微物镜。随后,在PQDs薄膜表面放置金属 栅网以阻隔泵浦电子束,进而为PQDs发光引入空间 频率信息,该金属栅网的表征如图5(a)所示。分别用 图4(a)中插图所用的电子束和紫外光轰击该金属栅 网与量子点薄膜,从CMOS捕获到的图像如图5(b)和 (c)所示。可见,该成像过程属于典型的夫琅禾费衍 射,其焦平面处的频谱特征可以根据像平面处CMOS

传感器捕获到的图像反算获得,相应的电子束泵浦成像的空间特征频谱如图5(d)所示。该金属栅网的理论频率特征函数、电子束泵浦发光的光学传递函数以及光泵浦发光的光学传递函数之间的对比效果如图5(e)所示。其中,金属栅网的理论频率特征函数可以表示为

$$I(x, y) = I(0, 0) \operatorname{sinc}^{2} \left(\frac{ax}{\lambda f} \right) \frac{\sin \left[N \left(\pi x d/\lambda f \right) \right]}{\sin \left(\pi x d/\lambda f \right)} \times \operatorname{sinc}^{2} \left(\frac{ay}{\lambda f} \right) \frac{\sin \left[N \left(\pi y d/\lambda f \right) \right]}{\sin \left(\pi y d/\lambda f \right)},$$
(1)

式中: $sinc(u) = sin(\pi u)/\pi u; I(0,0)$ 为中心主极大强 度; a为栅孔长度; λ 为波长; f为透镜焦距; N为栅孔 数; d为栅孔间距。为了简化分析, 图 5(e) 只考虑了二 维金属栅网空间频率函数的一维特性。可见, 该金属

第 42 卷 第 19 期/2022 年 10 月/光学学报

栅网的空间衍射分量将导致空间频谱的4阶和8阶频 谱缺级,但是金属栅网制造工艺上存在的一些微小误 差导致了量子点薄膜空间频谱的4阶和8阶并未完全 消失。此外,图5(e)表明电子束泵浦量子点成像的特 征频率基本能覆盖空间频谱的4阶分量,而光泵浦量 子点成像的特征频率可达到8阶分量以上,即电子束 泵浦的成像特征频率低于光泵浦成像特征频率的一 半。图 5(f)中两种发光模型的边缘梯度对比也证实了 上述结论。由图 5(f)中光泵浦成像的边缘梯度可知, CMOS的分辨率和显微镜的光学衍射特性会使该边 缘梯度在水平方向上向金属栅网下方延伸约800 nm。 同时,电子束泵浦模型中电子的散射也会导致其边缘 梯度在水平方向上产生额外850 nm的扩展。也就是 说,水平散射的深度约为850 nm,即该深度(850 nm) 为电子束泵浦 PQDs的发光阈值。在此半径范围内, CsPsBr₃纳米晶体可以从电子束中吸收足够的能量并 发射出可见光子。

Fig. 5 Luminescence threshold of electron beam pumped perovskite quantum dots. (a) Characterization of metal film-net;
(b) luminescence imaging of PQDs pumped by laser; (c) luminescence imaging of PQDs pumped by 5 keV electron beam;
(d) space frequency spectrum of PQDs pumped by electron beam; (e) space frequency spectrum comparison of two luminescence models; (f) edge gradient comparison of two luminescence models

4 分析与讨论

通过上述实验已经大致测得了 PQDs 的激射阈值

和发光阈值。但由于电子束在量子点薄膜中的散射轨 迹是典型的衰减过程,也就是说,在空间维度上的量子 点发光效率应该是一个变量函数。因此,构建电子束

第 42 卷 第 19 期/2022 年 10 月/光学学报

泵浦PQDs不同膜层的极化分布情况对计算不同薄膜 层的发光效率是非常必要的。通过将量子点激射和发 光的边界函数代入到Casino软件中,即可模拟PQDs 膜层中散射电子的平均动能密度衰减模型^[27]。各层 PQDs薄膜在垂直方向上和水平方向上捕获的动能密 度分别如图 6(a)、(b)所示。在水平方向和垂直方向 上通过发光实验的结果即可确定量子点发光阈值边 界,在此基础上得出5keV时PQDs的极化分布如图6 (c)所示。仿真结果表明,当薄膜中泵浦能量的体能量 密度达到20eV/µm³时,PQDs区域将进入发光状态。 当 PQDs薄膜层进入激射状态时,体能量密度达到 237eV/µm³。

图 6 电子束在 PQDs 薄膜中的能量分布及发光模型。(a)电子束在 PQDs 薄膜中垂直方向的能量分布;(b)电子束在 PQDs 薄膜中水 平方向的能量分布;(c) 5 keV 电子束泵浦 PQDs 薄膜的发光分布模型

Fig. 6 Energy distributions and luminescence model of electron beam in PQD films. (a) Vertical energy distribution of electron beam in PQD films; (b) horizontal energy distribution of electron beam in PQD films; (c) luminescence distribution model of PQD films pumped by 5 keV electron beam

根据上述理论分析,无论随机激射还是发光,PQDs薄膜内带间跃迁产生的光子辐射能量几乎相同。基于此,只需将电子束泵浦PQDs发光的体能量密度和图6(c)所示的5kV泵浦电压的PQDs极化空间分布相结合,即可计算出PQDs薄膜不同区域内的量子点发光效率,如图7所示。可见,虽然在量子点薄膜的激射区域内激射光强很强,但入射能量大部分用于高阶跃迁

Fig. 7 Model of luminescence efficiency of quantum dots under 5 keV pumped electric field

并产生低频光子辐射,因而此区域内量子点发光效率 较低。相反,在图 6(c) 中激射区域边界外的发光区 域,电子束泵浦能量的发光转化效率逐渐提高,最高可 达97%左右,如果考虑热损失,该结果和目前国内外 研究现状基本符合[8.28]。就整个量子点膜层而言,发光 效率与PQDs薄膜中电子束的泵浦强度和量子点膜层 的厚度密切相关。例如,更强的泵浦电场会扩大 PQDs激射区域并诱发更多的高阶跃迁,但在激射区 域电子束泵浦发光的能量转化效率并不是很高。反 之,泵浦电场过强且膜层厚度过薄,则会导致整个膜层 进入激发态,在激发态下膜层的发光效率极低。因此, 在设计器件时要根据器件功能的不同进行具体的设 计。例如,在设计太赫兹低频辐射器件时,要尽可能地 增强泵浦电场强度以扩大激射区域,提升器件的低频 辐射转换效率。而在设计发光器件时,为了获取较高 的发光转化效率,应通过调控泵浦电场和膜层厚度减 小激射区域,增大发光区域。

5 结 论

本文揭示了电子束泵浦PQDs发光的机理并进行 了实验建模,基于实验与仿真结果构建了PQDs被电 子束泵浦的极化分布情况以及膜层发光过程中能量转

化效率的分布情况,证实了通过调控泵浦电压和量子 点膜厚等因素可动态地调节 PQDs薄膜内部随机激射 区域与发光区域的膜层分布,进而有效地影响器件发 光的能量转化效率,这将为后续的器件设计提供理论 支撑。

参考文献

- Kienberger R, Goulielmakis E, Uiberacker M, et al. Atomic transient recorder[J]. Nature, 2004, 427(6977): 817-821.
- [2] Domingue S R, Bartels R A, Chicco A J, et al. Transient absorption imaging of hemes with 2-color, independently tunable visible-wavelength ultrafast source
 [J]. Biomedical Optics Express, 2017, 8(6): 2807-2821.
- [3] Schnell M, Carney P S, Hillenbrand R. Transient vibration imaging with time-resolved synthetic holographic confocal microscopy[J]. Optics Express, 2018, 26(20): 26688-26699.
- [4] 殷录桥,张豆豆,王胜,等.基于CsPbBr₃钙钛矿量子点的白光LED器件的电流稳定性研究[J].光学学报,2021,41(19):1923002.
 Yin L Q, Zhang D D, Wang S, et al. Research on current stability of white LED devices based on CsPbBr₃ perovskite quantum dots[J]. Acta Optica Sinica, 2021,41 (19): 1923002.
- [5] 方红华,黎潇泽,周沄科,等.钙钛矿中热载流子的超快光谱探测[J].光学学报,2021,41(8):0823009.
 Fang H H, Li X Z, Zhou Y K, et al. Ultrafast spectroscopy of hot carriers in perovskites[J]. Acta Optica Sinica, 2021, 41(8): 0823009.
- [6] He Y H, Su R, Huang Y Y, et al. High-order shift current induced terahertz emission from inorganic cesium bromine lead perovskite engendered by two-photon absorption[J]. Advanced Functional Materials, 2019, 29 (40): 1904694.
- [7] Protesescu L, Yakunin S, Bodnarchuk M I, et al. Nanocrystals of cesium lead halide perovskites (CsPbX₃, X=Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut[J]. Nano Letters, 2015, 15(6): 3692-3696.
- [8] Deschler F, Price M, Pathak S, et al. High photoluminescence efficiency and optically pumped lasing in solution-processed mixed halide perovskite semiconductors[J]. The Journal of Physical Chemistry Letters, 2014, 5(8): 1421-1426.
- [9] Bagherzadeh-Khajehmarjan E, Mirershadi S, Ahmadi-Kandjani S. Three-photon-induced upconversion luminescence of lead bromide CH₃NH₃PbBr₃ perovskites
 [J]. Applied Physics B, 2017, 123(10): 257.
- [10] Song J Z, Li J H, Li X M, et al. Quantum dot lightemitting diodes based on inorganic perovskite cesium lead halides (CsPbX₃)[J]. Advanced Materials, 2015, 27(44): 7162-7167.
- [11] Tao W, Zhang C, Zhou Q, et al. Momentarily trapped exciton polaron in two-dimensional lead halide perovskites[J]. Nature Communications, 2021, 12: 1400.

- [12] Wang Y, Li X M, Zhao X, et al. Nonlinear absorption and low-threshold multiphoton pumped stimulated emission from all-inorganic perovskite nanocrystals[J]. Nano Letters, 2016, 16(1): 448-453.
- [13] Fu Y P, Zhu H M, Stoumpos C C, et al. Broad wavelength tunable robust lasing from single-crystal nanowires of cesium lead halide perovskites (CsPbX₃, X=Cl, Br, I)[J]. ACS Nano, 2016, 10(8): 7963-7972.
- [14] Ren Y J, Wang W H, Wang Z M, et al. Robust wavelength-converting and lasing media from wafer-scale inorganic perovskites enabled by a protective surface layer [J]. The Journal of Physical Chemistry C, 2020, 124(15): 8341-8346.
- [15] Park Y, Ying G H, Jana A, et al. Coarse and fine-tuning of lasing transverse electromagnetic modes in coupled allinorganic perovskite quantum dots[J]. Nano Research, 2021, 14(1): 108-113.
- [16] Mu Y N, Zhang T, Chen T Q, et al. Manufacturing and characterization on a three-dimensional random resonator of porous silicon/TiO₂ nanowires for continuous light pumping lasing of perovskite quantum dots[J]. Nano, 2020, 15(2): 2050016.
- [17] Li C L, Zang Z G, Han C, et al. Highly compact CsPbBr₃ perovskite thin films decorated by ZnO nanoparticles for enhanced random lasing[J]. Nano Energy, 2017, 40: 195-202.
- [18] 时月晴,李如雪,余佳豪,等.高增益CsPbBr₃钙钛矿纳 米棒的研制及其稳定性研究[J].中国激光,2020,47(7): 0701024.
 Shi Y Q, Li R X, Yu J H, et al. Synthesis and stability of CsPbBr₃ perovskite nanorods with high optical gain[J]. Chinese Journal of Lasers, 2020, 47(7): 0701024.
- [19] Fan H B, Mu Y N, Liu C Y, et al. Random lasing of CsPbBr₃ perovskite thin films pumped by modulated electron beam[J]. Chinese Optics Letters, 2020, 18(1): 011403.
- [20] 杜鹏,母一宁,任航,等.电子束泵浦钙钛矿纳米晶随机激射的瞬态发光特性[J].光子学报,2020,49(4):0404001.
 Du P, Mu Y N, Ren H, et al. Transient luminescence characteristics of random laser emission based on electron beam pumping perovskite nanocrystals[J]. Acta Photonica Sinica, 2020, 49(4):0404001.
- [21] Hussain M, Rashid M, Saeed F, et al. Spin-orbit coupling effect on energy level splitting and band structure inversion in CsPbBr₃[J]. Journal of Materials Science, 2021, 56(1): 528-542.
- [22] Korolev V I, Pushkarev A P, Obraztsov P A, et al. Enhanced terahertz emission from imprinted halide perovskite nanostructures[J]. Nanophotonics, 2019, 9(1): 187-194.
- [23] Chen J J, Wu K, Hu W, et al. Tunable Rashba spin splitting in two-dimensional polar perovskites[J]. The Journal of Physical Chemistry Letters, 2021, 12(7): 1932-1939.
- [24] Cinquanta E, Meggiolaro D, Motti S G, et al. Ultrafast THz probe of photoinduced polarons in lead-halide

perovskites[J]. Physical Review Letters, 2019, 122(16): 166601.

- [25] Zhang Y X, Dong L. Enhanced coherent terahertz Smith-Purcell superradiation excited by two electron-beams[J]. Optics Express, 2012, 20(20): 22627-22635.
- [26] Bao Z, Wang W G, Tsai H Y, et al. Photo-electroluminescence enhancement of CsPbX₃ (X=Cl, Br, or I) perovskite quantum dots via thiocyanate surface modification[J]. Journal of Materials Chemistry C, 2020,

8(3): 1065-1071.

- [27] Demers H, Poirier-Demers N, Couture A R, et al. Three-dimensional electron microscopy simulation with the CASINO Monte Carlo software[J]. Scanning, 2011, 33(3): 135-146.
- [28] Yang D, Zhang G, Lai R, et al. Germanium-lead perovskite light-emitting diodes[J]. Nature Communications, 2021, 12: 4295.